
What all the stuff in email 
headers means—and how to 
sniff out spoofing
Parsing email headers needs care and knowledge—but it 
requires no special tools.
JIM SALTER - 8/7/2019, 7:30 AM - Are Technica

Come to think of it, maybe you shouldn't open this one at all.

I pretty frequently get requests for help from someone who has been 
impersonated—or whose child has been impersonated—via email. 
Even when you know how to "view headers" or "view source" in your 
email client, the spew of diagnostic wharrgarbl can be pretty 
overwhelming if you don't know what you're looking at. Today, we're 
going to step through a real-world set of (anonymized) email headers 
and describe the process of figuring out what's what.

�1

https://arstechnica.com/author/jimsalter/
https://i.imgur.com/NKP48r9.jpg


Before we get started with the actual headers, though, we're going to 
take a quick detour through an overview of what the overall path of an 
email message looks like in the first place. (More experienced 
sysadmin types who already know what stuff like "MTA" and "SPF" 
stand for can skip a bit ahead to the fun part!)

From MUA to MTA, and back to MUA 
again
The basic components involved in sending and receiving email are 
the Mail User Agent and Mail Transfer Agent. In the briefest possible 
terms, an MUA is the program you use to read and send mail from 
your own personal computer (like Thunderbird, or Mail.app, or even a 
webmail interface like Gmail or Outlook), and MTAs are programs that 
accept messages from senders and route them along to their final 
recipients.

Traditionally, mail was sent to a mail server using the Simple Mail 
Transfer Protocol (SMTP) and downloaded from the server using the 
Post Office Protocol (abbreviated as POP3, since version 3 is the 
most commonly used version of the protocol). A traditional Mail User 
Agent—such as Mozilla Thunderbird—would need to know both 
protocols; it would send all of its user's messages to the user's mail 
server using SMTP, and it would download messages intended for the 
user from the user's mail server using POP3.

As time went by, things got a bit more complex. IMAP largely 
superseded POP3 since it allowed the user to leave the actual email 
on the server. This meant that you could read your mail from multiple 
machines (perhaps a desktop PC and a laptop) and have all of the 
same messages, organized the same way, everywhere you might 
check them.

Finally, as time went by, webmail became more and more popular. If 
you use a website as your MUA, you don't need to know any pesky 

�2

https://en.wikipedia.org/wiki/Email_client
https://en.wikipedia.org/wiki/Message_transfer_agent
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://en.wikipedia.org/wiki/Post_Office_Protocol
https://en.wikipedia.org/wiki/Internet_Message_Access_Protocol


SMTP or IMAP server settings; you just need your email address and 
password, and you're ready to read.

Ultimately, any message from one human user to another follows the 
path of MUA ⟶ MTA(s) ⟶ MUA. The analysis of email headers 
involves tracing that flow and looking for any funny business.

TLS in-flight encryption
The original SMTP protocol had absolutely no thought toward security
—any server was expected to accept any message, from any sender, 
and pass the message along to any other server it thought might know 
how to get to the recipient in the To: field. That was fine and dandy in 
email's earliest days of trusted machines and people, but it rapidly 
turned into a nightmare as the Internet scaled exponentially and 
became more commercially valuable.

It's still possible to send email with absolutely no thought toward 
encryption or authentication, but such messages will very likely get 
rejected along the way by anti-spam defenses. Modern email typically 
is encrypted in-flight, and signed and authenticated at-rest. In-flight 
encryption is accomplished by TLS, which helps keep the content of a 
message from being captured or altered in-flight from one server to 
another. That's great, so far as it goes, but in-flight TLS is only applied 
when mail is being relayed from one MTA to another MTA along the 
delivery path.

If an email travels from the sender through three MTAs before 
reaching its recipient, any server along the way can alter the content 
of the message—TLS encrypts the transmission from point to point 
but does nothing to verify the authenticity of the content itself or the 
path through which it's traveling.

�3



SPF—the Sender Policy Framework
The owner of a domain can set a TXT record in its DNS that states 
what servers are allowed to send mail on behalf of that domain. For a 
very simple example, Ars Technica's SPF record says that email from 
arstechnica.com should only come from the servers specified in 
Google's SPF record. Any other source should be met with a 
SoftFail error; this effectively means "trust it less, but don't 
necessarily yeet it into the sun based on this alone."

SPF headers in an email can't be completely trusted after they're 
generated, because there is no encryption involved. SPF is really only 
useful to the servers themselves, in real time. If a server knows that 
it's at the outside boundary edge of a network, it also knows that any 
message it receives should be coming from a server specified in the 
sender's domain's SPF record. This makes SPF a great tool for 
getting rid of spam quickly.

DKIM—DomainKeys Identified Mail
Similarly to SPF, DKIM is set in TXT records in a sending domain's 
DNS. Unlike SPF, DKIM is an authentication technique that validates 
the content of the message itself.

The owner of the sending domain generates a public/private key pair 
and stores the public key in a TXT record on the domain's DNS. Mail 
servers on the outer boundary of the domain's infrastructure use the 
private DKIM key to generate a signature (properly an encrypted 
hash) of the entire message body, including all headers accumulated 
on the way out of the sender's infrastructure. Recipients can decrypt 
the DKIM signature using the public DKIM key retrieved from DNS, 
then make sure the hash matches the entire message body, including 
headers, as they received it.

If the decrypted DKIM signature is a matching hash for the entire 
body, the message is likely to be legitimate and unaltered—at least as 

�4

https://mxtoolbox.com/SuperTool.aspx?action=spf%3aarstechnica.com&run=toolpage#
https://mxtoolbox.com/SuperTool.aspx?action=spf%3aarstechnica.com&run=toolpage#
https://en.wiktionary.org/wiki/yeet
https://en.wikipedia.org/wiki/DomainKeys_Identified_Mail


verified by a private key belonging only to the domain owner (the end 
user does not have or need this key). If the DKIM signature is invalid, 
you know that the message either did not originate from the purported 
sender's domain or has been altered (even if only by adding extra 
headers) by some other server in between. Or both!
This becomes extremely useful when trying to decide whether a set of 
headers is legitimate or spoofed—a matching DKIM signature means 
that the sender's infrastructure vouches for all headers below the 
signature line. (And that's all it means, too—DKIM is merely one tool 
in the mail server admin's toolbox.)

DMARC—Domain-based Message 
Authentication, Reporting, and 
Conformance
DMARC extends SPF and DKIM. It's not particularly exciting from the 
perspective of someone trying to trace a possibly fraudulent email; it 
boils down to a simple set of instructions for mail servers about how to 
handle SPF and DKIM records. DMARC can be used to request that a 
mail server pass, quarantine, or reject a message based on the 
outcome of SPF and DKIM verification, but it does not add any 
additional checks on its own.

Analyzing a sample email
Below you'll find a set of real headers from a real email. They show a 
fairly convoluted—but legitimate—path from an AOL account to a 
locally hosted Exchange server. They've been heavily redacted, with 
IP addresses, hostnames, and timestamps altered, but they're still 
intact enough for analysis.

We'll break it up into chunks, but we're reading those chunks strictly in 
order from top to bottom. Each server along the path prepends its own 
header to the top of the raw email body, above the headers of all 
servers that came before it. So as you read these, you're starting from 

�5

https://en.wikipedia.org/wiki/DMARC


the final destination MTA and working your way down toward the MTA 
that first accepted the message from the sender's MUA.

•  
 
The first page of headers from our sample email show us transport from a 
locally hosted Exchange server (top) through a private, third-party filtering 
service (the Postfix headers at the bottom). Jim Salter  
 

•  
 
This second page of headers (still from the same sample email) is where 
things get interesting. Microsoft's Outlook.com has received the email from 
a Yahoo mailserver, sending (legitimately) on behalf of an AOL user. Jim 
Salter  
 

•  
 
The third and final (bottom) page of headers tells us about the originating 
sender: an iPhone, using a Web service (or possibly an app front-end for a 
Web service). Jim Salter  
 

First group: Locally hosted Exchange 
infrastructure
Received: from REDACTED01.exch.domain.local 
(10.4.3.88) by
REDACTED01.exch.domain.local (10.4.3.88) with 
Microsoft SMTP Server
(version=TLS1_2, 
cipher=TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384_P521) 
id
15.1.1713.5 via Mailbox Transport; Tue, 06 Aug 2019 
09:51:59 -0400

Received: from REDACTED01.exch.domain.local 
(10.4.3.88) by

�6



REDACTED01.exch.domain.local (10.4.3.88) with 
Microsoft SMTP Server
(version=TLS1_2, 
cipher=TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384_P521) 
id
15.1.1713.5; Tue, 06 Aug 2019 09:51:59 -0400

Received: from redacted2.privatedomain.net 
(10.11.74.70) by
REDACTED01.exch.domain.local (10.4.3.89) with 
Microsoft SMTP Server
(version=TLS1_2, 
cipher=TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384_P521) 
id
15.1.1713.5 via Frontend Transport; Tue, 06 Aug 
2019 09:51:59 -0400

Looking at the first few header blocks on this message, we can see it 
was received by an on-premises Microsoft Exchange server run by the 
recipient's organization (ie, not on Office365 or Azure). We can also 
see that the message is being sent via encrypted SMTP along the way 
on these two hops and what ciphers were used.

We know this is a Microsoft Exchange server both by the (private) 
hostname, and more directly, by the "Microsoft SMTP Server" 
application name listed in each header block.

Note each IP address in these blocks is private. Any IP address that 
begins with 10. is private and not publicly routable per IETF 
RFC1918. That indicates that this leg of the email's journey was over 
a privately managed network and not over the actual internet. We 
haven't yet left the local infrastructure.

When we make it to the third header block—received from 
redacted2.privatedomain.net—we mark the transition from the 

�7

https://en.wikipedia.org/wiki/Private_network
https://en.wikipedia.org/wiki/Private_network


local Exchange server to a mail filtering service. We can see that 
although we still haven't left the private network space, we've moved 
to what is likely a different subnet—from the local 10.11.x.x to 
10.4.x.x—which may indicate either a VPN tunnel to a different 
location, or simply a different VLAN on the same overall local network. 
Because the IP address is private, there's no way for us to know much 
more than that. We can also see that this leg of the journey wasn't 
strictly SMTP; it was "via Frontend Transport," a Microsoft-Exchange 
specific protocol.

Second group: A third-party filtering 
service
Received: from redacted3.privatedomain.net 
(redacted3.privatedomain.net [10.6.56.120])
 (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-
SHA384 (256/256 bits))
 (No client certificate requested)
 by redacted4.privatedomain.net (Postfix) with 
ESMTPS id 9935F120006
 for <redacted@recipient.tld>; Tue, 06 Aug 2019 
06:52:59 -0700 (PDT)

Received: from redacted4.privatedomain.net 
(redacted4.privatedomain.net
[10.11.72.70])
 (using TLSv1.2 with cipher ECDHE-RSA-AES256-GCM-
SHA384 (256/256 bits))
 (No client certificate requested)
 by redacted5.privatedomain.net (Postfix) with 
ESMTPS id 6AB16120005
 for <redacted@recipient.tld>; Tue, 06 Aug 2019 
06:52:59 -0700 (PDT)</redacted@recipient.tld></
redacted@recipient.tld>

�8



Although we're still on a private network, as seen by the 10.x.x.x IP 
addresses, we can see that we've left the Exchange ecosystem—the 
next MTA in the chain is running Postfix, a common Unix-based MTA 
(I'm using "Unix-based" here as a stand-in for Linux, BSD, and all 
other *nix-y operating systems; I am also very aware of the differences 
between a kernel and a distro so please let's not bog down into a 
semantic argument). We can also guess from the sudden change in 
server time zone that we're probably no longer on the local network. 
This hop's Postfix server is on Pacific time, while the local Exchange 
servers were on Eastern time. This is most likely a third-party mail 
filtering service, which may strip spam and/or malware attachments 
from incoming email.

Third group: outlook.com mail service
Received: from NAM03-CO1-
obe.outbound.protection.outlook.com
(mail-
co1nam03lp2053.outbound.protection.outlook.com 
[104.47.40.53])
 (using TLSv1.2 with cipher ECDHE-RSA-AES256-SHA384 
(256/256 bits))
 (No client certificate requested)
 by east.smtp.mx.exch.serverdata.net (Postfix) with 
ESMTPS id 299186001F
 for <redacted@recipient.tld>; Tue, 06 Aug 2019 
06:52:59 -0700 (PDT)

Received: from CO1NAM03FT022.eop-
NAM03.prod.protection.outlook.com
(10.152.80.52) by CO1NAM03HT180.eop-
NAM03.prod.protection.outlook.com
(10.152.80.254) with Microsoft SMTP Server 
(version=TLS1_2,

�9



cipher=TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384) id 
15.20.1987.11; Tue, 06 Aug 2019 13:52:57 +0000</
redacted@recipient.tld>

Now, we've finally gotten to something public—the recipient in this 
case is using Microsoft's outlook.com hosting service to handle 
edge transport of their mail. This means we're about to get to 
something meaty: outlook.com's assessment of the DKIM and SPF 
validity of the sending domain.

Remember, any change in the email body—including a change or 
addition to the headers so far—would invalidate the signature. A 
passing DKIM grade from outlook.com here will indicate that the 
message both (probably) originated from a sender within the domain 
in the From: header, and has (probably) not been altered since it left 
that domain's infrastructure. A DKIM fail would indicate that the 
message is either completely fake or was tampered with prior to 
outlook.com receiving it.

Fourth group: DKIM, SPF, and DMARC 
results
Authentication-Results: spf=pass (sender IP is 
74.6.132.229)
smtp.mailfrom=aol.com; redacted recipient domain; 
dkim=pass (signature was
verified) header.d=aol.com;redacted recipient 
domain; dmarc=pass action=none
header.from=aol.com;compauth=pass reason=100
Received-SPF: Pass (protection.outlook.com: domain 
of aol.com designates
74.6.132.229 as permitted sender) 
receiver=protection.outlook.com;
client-ip=74.6.132.229; 
helo=sonic306-30.consmr.mail.bf2.yahoo.com;

�10

https://en.wikipedia.org/wiki/DomainKeys_Identified_Mail
https://en.wikipedia.org/wiki/Sender_Policy_Framework


Received: from 
sonic306-30.consmr.mail.bf2.yahoo.com 
(74.6.132.229) by
CO1NAM03FT022.mail.protection.outlook.com 
(10.152.80.182) with Microsoft SMTP
Server (version=TLS1_2, 
cipher=TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384) id
15.20.1987.11 via Frontend Transport; Tue, 06 Aug 
2019 13:52:57 +0000
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/
relaxed; d=aol.com; s=a2048;
[potentially identifying information redacted]

This is outlook.com's header detailing their SPF/DKIM assessment 
of the message that was sent. The message claimed to be from a user 
redacted@aol.com. The SPF record for aol.com includes 
yahoo.com's SPF records, and the server that outlook.com 
received the message from—74.6.132.229—is a Yahoo mail 
server, so the message passes SPF validation.

More importantly for us, we see that DKIM verification also passed. 
This means that we can be pretty certain that the message in question 
really did come from an @aol.com mail account—it was signed by a 
legitimate aol.com mail server on its way out and was (probably) not 
tampered with in transit between the aol.com and 
outlook.com networks.

Fifth group: The MTA that first received 
the message, and the MUA that sent it
Received: from sonic.gate.mail.ne1.yahoo.com by
sonic306.consmr.mail.bf2.yahoo.com with HTTP; Tue, 
06 Aug 2019 13:52:55 +0000

Date: Tue, 06 Aug 2019 13:52:55 +0000 (UTC)

�11



From: redacted sender <redacted@aol.com>
To: redacted recipient <redacted@redacted.tld>
Message-ID: <redacted-id@mail.yahoo.com>
Subject: redacted

Although we're reading it last, this is the first set of headers tacked 
onto the original email, put there by the Yahoo webmail server that 
received it from its original source.

Yahoo's server didn't receive the message via an MUA using standard 
SMTP; instead, it created the message from input it received on a 
Web application, as noted by the with HTTP line in the header.

The From, To, and Subject lines are generally created by whoever 
wrote the originating message and aren't normally very trustworthy—
there's nothing inherent in the SMTP protocol that keeps you from 
sticking potus@whitehouse.gov or similar in the From field.
But in this case, we've already verified that the From: claims an 
aol.com email address and that outlook.com received the 
message from a mail server that aol.com says is allowed to 
send @aol.com email. Since we can also see that it was signed with 
a private key that only aol.com should possess, we can be pretty 
certain that it comes from where it said it does and that its content has 
almost certainly not been manipulated.

AOL does not allow you to monkey with a From: address when 
sending email; its interface only allows you to use a "screen name" 
under your control. This can be the primary screen name for your 
account or one of up to six others that can be added or deleted at will. 
Each screen name's email address is a fully working email address 
tied to the user's account and personal identifying information, 
however, so this would be good news for anyone who's prepared to 
subpoena an ISP in order to identify a harassing sender.

�12



Finally, Yahoo's webmail server tells us a little of what it knows about 
the device that logged in to its Web application to create and send the 
message:

MIME-Version: 1.0
Content-Type: multipart/alternative;
boundary="----=_Part_redacted"

References: <redacted-id.ref@mail.yahoo.com>
X-Mailer: WebService/1.1.13837 aoljas Mozilla/5.0 
(iPhone;
CPU iPhone OS [redacted] like Mac OS X) 
AppleWebKit/[redacted version number] (KHTML,
like Gecko) Version/[redacted] Mobile/[redacted] 
Safari/[redacted]</redacted-id.ref@mail.yahoo.com>
The X-Mailer header here appends the User-Agent information 
from the device that contacted the Yahoo webmail server. In this case, 
the information points to an end user using an iPhone to send the 
message. In some cases, you can see the original IP address of the 
end user who sent the message; in this case, Yahoo/AOL decided to 
protect that information—the service itself knows what IP address the 
end user's device was using, but they're not likely to tell the recipient 
without a valid subpoena.

How much of this information can we 
trust?
One big problem with analysis of email headers is that they, too, can 
be faked by malicious servers along the way. You always know that 
the very topmost header on a raw email is absolutely something 
added by your own mail server, since that was the last one in the 
chain. But beyond that, any malicious mail server could have freely 
altered any header information from servers that came before it.

�13



In this case, DKIM gives us considerably more confidence in the 
validity of the headers we really care about. Since the recipient here 
uses outlook.com as its edge transport for their email, and 
outlook.com does DKIM signature validation of the email it 
receives, we know that the entire content of the email, including the 
headers below outlook.com's bottom header, should be valid.

With that said, we can only trust that DKIM pass line if we're the ones 
using outlook.com as edge transport, and we can verify that all the 
server headers above outlook.com belong to our own trustworthy 
infrastructure. If you're coming into this as a third party, you can and 
should take the actual DKIM signature (which was present, but we 
redacted from these sample headers) and verify it against the entire 
email, including headers, below that one, using the sender's public 
key (which can be looked up in the sending domain's public facing 
DNS).

In the absence of DKIM signatures, we would not be able to trust any 
of the headers below the ones prepended by our own mail servers—or 
even, necessarily, the content of the email itself—and would need to 
go through the long process of manually contacting the operators of 
each mail server along the way, asking if the header lines matched 
corresponding entries in their SMTP server logs.

Is this enough to identify the person who 
sent it?
You can very rarely get enough information from email headers alone 
to positively identify a sender. The goal typically is to narrow down the 
potential range of senders and identify the exact information you 
would need to demand from an ISP by way of subpoena. If we needed 
to positively identify the sender in this case, we would have the 
potential to request a court order for further information from two 
entities: Yahoo and AOL.

�14

https://protodave.com/tools/dkim-key-checker/


Given the message ID (redacted here), the timestamp of receipt, and 
the name of the mail server, Yahoo would be able to provide the IP 
address used by the device that sent the message. That IP address 
could then be tied to a particular ISP, and that ISP could be 
subpoenaed to identify the billing information of the user to whom that 
IP address was allocated at the time the message was created. If the 
IP address Yahoo provides is an unsecured Web proxy, that's an 
unhelpful dead-end; but if it's an end-user IP address, it'll provide a 
reasonably strong correlation to the customer whose account it was 
allocated to.

In this case, since the message came from an AOL user and we can 
be fairly certain that the sending address was a screen name 
associated directly with an account, a lawyer might instead (or 
additionally) try to subpoena AOL for the customer information 
associated with that screen name.

Neither of these pieces of information—the sending IP address or the 
primary screen name of the AOL customer who sent it—is, by itself, an 
uncontestable smoking gun. But they can be strong evidence that 
helps to build a case.

original article:
https://arstechnica.com/information-technology/2019/08/ars-forensic-
files-how-to-parse-through-e-mail-headers-and-spot-obfuscation/

�15

https://arstechnica.com/information-technology/2019/08/ars-forensic-files-how-to-parse-through-e-mail-headers-and-spot-obfuscation/
https://arstechnica.com/information-technology/2019/08/ars-forensic-files-how-to-parse-through-e-mail-headers-and-spot-obfuscation/

