
How passkeys work: The
complete guide to your
inevitable passwordless
future

Why are passkeys so much safer than
passwords? And how exactly does this sorcery
work? We go behind the scenes of this still-
evolving authentication process.

Written by David Berlind, Senior Contributing Editor

July 8, 2025 at 7:00 p.m. PT

Reviewed by David Grober

ZDNet

1

https://www.zdnet.com/meet-the-team/david-berlind/
https://www.zdnet.com/meet-the-team/david-grober/

I've been writing a lot about passkeys recently -- and with
good reason. This year, some of the world's largest
technology companies are doubling down on efforts to
convince their billions of global users to start using
passkeys instead of passwords when signing into
websites, apps, and other services.

Passwords versus passkeys

how passkeys work

Do your favorite sites even support passkeys?

Passkeys are often described as a passwordless
technology. In order for passwords to work as a part of
the authentication process, the website, app, or other

2

https://www.zdnet.com/article/why-the-road-from-passwords-to-passkeys-is-long-bumpy-and-worth-it-probably/#link=%7B%22role%22:%22standard%22,%22href%22:%22https://www.zdnet.com/article/why-the-road-from-passwords-to-passkeys-is-long-bumpy-and-worth-it-probably/%22,%22target%22:%22_blank%22,%22absolute%22:%22%22,%22linkText%22:%22passkeys%22%7D

service -- collectively referred to as the "relying party" --
must keep a record of that password in its end-user
identity management system. This way, when you submit
your password at login time, the relying party can check
to see if the password you provided matches the one it
has on record for you.

The process is the same, whether or not the password on
record is encrypted. In other words, with passwords,
before you can establish a login, you must first share your
secret with the relying party. From that point forward,
every time you go to login, you must send your secret to
the relying party again. In the world of cybersecurity,
passwords are considered shared secrets, and no matter
who you share your secret with, shared secrets are
considered risky.

Also: Biometrics vs. passcodes: What lawyers say if
you're worried about warrantless phone searches

Many of the largest and most damaging data breaches in
history might not have happened had a malicious actor
not discovered a shared password.

In contrast, passkeys also involve a secret, but that secret
is never shared with a relying party. Passkeys are a form
of Zero Knowledge Authentication (ZKA). The relying party

3

https://www.zdnet.com/article/biometrics-vs-passcodes-what-lawyers-say-if-youre-worried-about-warrantless-phone-searches/#link=%7B%22role%22:%22standard%22,%22href%22:%22https:/www.zdnet.com/article/biometrics-vs-passcodes-what-lawyers-say-if-youre-worried-about-warrantless-phone-searches/%22,%22target%22:%22%22,%22absolute%22:%22%22,%22linkText%22:%22Biometrics%20vs.%20passcodes:%20What%20lawyers%20say%20if%20you're%20worried%20about%20warrantless%20phone%20searches%22%7D
https://www.zdnet.com/article/biometrics-vs-passcodes-what-lawyers-say-if-youre-worried-about-warrantless-phone-searches/#link=%7B%22role%22:%22standard%22,%22href%22:%22https:/www.zdnet.com/article/biometrics-vs-passcodes-what-lawyers-say-if-youre-worried-about-warrantless-phone-searches/%22,%22target%22:%22%22,%22absolute%22:%22%22,%22linkText%22:%22Biometrics%20vs.%20passcodes:%20What%20lawyers%20say%20if%20you're%20worried%20about%20warrantless%20phone%20searches%22%7D
https://www.zdnet.com/article/biometrics-vs-passcodes-what-lawyers-say-if-youre-worried-about-warrantless-phone-searches/#link=%7B%22role%22:%22standard%22,%22href%22:%22https:/www.zdnet.com/article/biometrics-vs-passcodes-what-lawyers-say-if-youre-worried-about-warrantless-phone-searches/%22,%22target%22:%22%22,%22absolute%22:%22%22,%22linkText%22:%22Biometrics%20vs.%20passcodes:%20What%20lawyers%20say%20if%20you're%20worried%20about%20warrantless%20phone%20searches%22%7D

has zero knowledge of your secret, and in order to sign in
to a relying party, all you have to do is prove to the relying
party that you have the secret in your possession.

Here's the big idea behind passkeys: If you never have to
share your secret with a legitimate relying party, then
you'll never accidentally share your secret with a
malicious actor like a phisher or smisher, either. But
humans are so programmed to think that we need to
share secret passwords that it's difficult for us to fathom
how it could work any other way.

So, how exactly is this possible? After all, it seems
counterintuitive. And why is it so much safer than
passwords?

Public key cryptography is
the foundation of passkeys

To understand how passkeys work, it's important to cover
some basics of public key cryptography. In the same way
that a physical key is matched to a specific lock, public
key cryptography involves two digital keys -- a public key
and a private key -- that are matched and unique to one
another. A set of these uniquely matched keys is called a

4

public/private key pair; behind every unique passkey
exists one of these unique pairs.

What's so special about a public/private key pair? Let's
say I give you the public key that matches a private (and
secret) key in my possession. You can use that public key
to scramble (encrypt) a message. When you send that
message to me, as long as I'm the only one who has the
matching private key, I'm the only one who can
unscramble (decrypt) that message.

Also: If we want a passwordless future, let's get our
passkey story straight

The public key cannot be used to decrypt that message
or derive the private key. The existence of public key
cryptography technology means that I can give away my
public key to as many people as I want, and they can all
use that same key to send me encrypted messages.
Meanwhile, I am the only one who can decrypt those
messages because I am the only one in possession of the
secret private key.

Also, I can use my private key to digitally sign any
messages that I might send to the holders of the
matching public key. This way, the public key-holding
recipients of any such messages can use their public key
to validate that the message came from someone in
possession of the matching secret private key. This

5

https://www.zdnet.com/article/if-we-want-a-passwordless-future-lets-get-our-passkey-story-straight/#link=%7B%22role%22:%22standard%22,%22href%22:%22https://www.zdnet.com/article/if-we-want-a-passwordless-future-lets-get-our-passkey-story-straight/%22,%22target%22:%22%22,%22absolute%22:%22%22,%22linkText%22:%22If%20we%20want%20a%20passwordless%20future,%20let's%20get%20our%20passkey%20story%20straight%22%7D
https://www.zdnet.com/article/if-we-want-a-passwordless-future-lets-get-our-passkey-story-straight/#link=%7B%22role%22:%22standard%22,%22href%22:%22https://www.zdnet.com/article/if-we-want-a-passwordless-future-lets-get-our-passkey-story-straight/%22,%22target%22:%22%22,%22absolute%22:%22%22,%22linkText%22:%22If%20we%20want%20a%20passwordless%20future,%20let's%20get%20our%20passkey%20story%20straight%22%7D
https://www.zdnet.com/article/if-we-want-a-passwordless-future-lets-get-our-passkey-story-straight/#link=%7B%22role%22:%22standard%22,%22href%22:%22https://www.zdnet.com/article/if-we-want-a-passwordless-future-lets-get-our-passkey-story-straight/%22,%22target%22:%22%22,%22absolute%22:%22%22,%22linkText%22:%22If%20we%20want%20a%20passwordless%20future,%20let's%20get%20our%20passkey%20story%20straight%22%7D

capability plays a special role when it comes to the ZKA
aspect of passkeys: convincing a relying party that I have
the secret part of the passkey -- the private key -- without
having to divulge the secret to them.

Unlike with passkeys, you must risk sharing your secret
password with a relying party (as described above) before
that password will work as a login credential with that
relying party; with passkeys, you never take that risk.

Four passkey workflows
everyone should know

For most users, there are four passkey-related processes
(workflows) to be aware of.

• 	Discovery and engagement with the relying party's
passkey functionality -- Among those relying parties
that support passkeys, there's no standard for how
their passkey functionality is advertised or accessed
by the user. From one relying party to the next, not
only might the user experience be different, but they
may also use a different vernacular to refer to the
same thing.

• 	The passkey registration ceremony -- For any given
relying party, you establish one or more passkeys

6

that you're going to use in order to sign in to a
website or app.

• 	The passkey-based authentication ceremony -- Once
a passkey has been enrolled with a relying party, this
is how you use it to authenticate with that relying
party.

• 	The passkey deletion process -- Cleaning up unused
or unwanted passkeys.

Also: Your password manager is under attack: How to
defend yourself against a new threat

Passkeys depend on
standards and hidden
complexity

The complexity of these workflows matters. Where the
public and private keys come into play, they are
significantly embellished by two industry standards that,
taken together, form the foundation on which passkeys
work. One of these standards -- known as WebAuthn --
comes from the World Wide Web Consortium (W3C) and
is an industry standard for web-based passwordless
authentication, passkey or not. In other words, passkeys

7

https://www.zdnet.com/article/your-password-manager-is-under-attack-how-to-defend-yourself-against-a-new-threat/#link=%7B%22role%22:%22standard%22,%22href%22:%22https://www.zdnet.com/article/your-password-manager-is-under-attack-how-to-defend-yourself-against-a-new-threat/%22,%22target%22:%22%22,%22absolute%22:%22%22,%22linkText%22:%22Your%20password%20manager%20is%20under%20attack:%20How%20to%20defend%20yourself%20against%20a%20new%20threat%22%7D
https://www.zdnet.com/article/your-password-manager-is-under-attack-how-to-defend-yourself-against-a-new-threat/#link=%7B%22role%22:%22standard%22,%22href%22:%22https://www.zdnet.com/article/your-password-manager-is-under-attack-how-to-defend-yourself-against-a-new-threat/%22,%22target%22:%22%22,%22absolute%22:%22%22,%22linkText%22:%22Your%20password%20manager%20is%20under%20attack:%20How%20to%20defend%20yourself%20against%20a%20new%20threat%22%7D
https://www.zdnet.com/article/your-password-manager-is-under-attack-how-to-defend-yourself-against-a-new-threat/#link=%7B%22role%22:%22standard%22,%22href%22:%22https://www.zdnet.com/article/your-password-manager-is-under-attack-how-to-defend-yourself-against-a-new-threat/%22,%22target%22:%22%22,%22absolute%22:%22%22,%22linkText%22:%22Your%20password%20manager%20is%20under%20attack:%20How%20to%20defend%20yourself%20against%20a%20new%20threat%22%7D
https://www.w3.org/TR/webauthn-2/
https://www.w3.org/

are WebAuthn-compliant credentials. Much of a
passkey's unique value proposition as a more secure
credential than a username-password combo is rooted in
its compliance with the passwordless WebAuthn
standard.

However, as complete as the WebAuthn specification is,
the innovation of the passkey required the support of an
additional foundational standard from another consortium
known as the FIDO Alliance. FIDO stands for Fast ID
Online, and the need for that additional standard is largely
rooted in the need for passkeys to be a friction-free form
of authentication involving little more user interaction than
the provision of a PIN or biometric (something that most
users are already familiar with).

Also: How passkeys work: What really happens during a
passwordless login?

After all, we already authenticate to a lot of applications
and devices with nothing more than our fingerprint. It
stands to reason that we should be able to do the same
with any website or app. Moreover, both the process and
user experience -- from one relying party to the next --
should be as standard and recognizable as the legacy
standard of using usernames and passwords.

8

https://fidoalliance.org/
https://www.zdnet.com/article/how-passkeys-work-what-really-happens-during-a-passwordless-login/
https://www.zdnet.com/article/how-passkeys-work-what-really-happens-during-a-passwordless-login/
https://www.zdnet.com/article/how-passkeys-work-what-really-happens-during-a-passwordless-login/

To meet that need, the FIDO Alliance published an
additional specification called the client-to-authenticator
protocol (CTAP). Just the phrase "client to authenticator"
is loaded with some of the complexity that most passkey
implementations attempt to hide from users (sometimes
not so successfully). As you'll learn in this series, a typical
passkey-based authentication -- officially referred to as an
"authentication ceremony" -- involves a sequence of
hand-offs from one entity to another, each one often
under the control of a different vendor and each one an
opportunity for user confusion or worse, a workflow's
failure.

Understanding passkey
terminology

As CTAP's meaning suggests, in addition to the
aforementioned relying party, two other entities are
involved in all passkey workflows: the client and the
authenticator. The client, in most circumstances, is the
piece of technology (i.e., a web browser) in the end-user's
device (i.e., computer or smartphone) that handles
incoming and outgoing web traffic. As a handler of your
system's web traffic, the client is essentially an
intermediary between the relying party and the
authenticator. It receives inbound WebAuthn-compliant
web-based authentication requests from the relying party,

9

https://fidoalliance.org/specifications-overview/

passes them on to an authenticator, and then relays the
authenticator's response back to the relying party.

Also: The best password managers: Expert tested

In a WebAuthn and passkey context, an authenticator is a
separate piece of technology (also in the user's
possession) that's not necessarily the type of
authenticator you're likely familiar with -- ones like Google
Authenticator or Symantec VIP that are devoted to the
generation of one-time passcodes. Authenticators in a
WebAuthn and passkey context can handle public key
cryptography tasks such as creating public/private key
pairs and using a private key to digitally sign or encrypt
messages before they are sent to a relying party.

Authenticators come in different forms, and, as discussed
in my 10 passkey survival tips, deciding which one to use
requires a bit of forward thinking and planning. In addition
to their role as credential managers that store and
synchronize credentials of all types (user ID/passwords,
passkeys, etc.) across all of your devices, password
managers such as 1Password, Bitwarden, Dashlane, and
LastPass can serve in a secondary role as authenticators
(the W3C refers to these third-party authenticators as
"virtual authenticators"). Similarly, the platforms and
browsers we use -- such as Windows, MacOS, Chrome,
and Firefox -- have their own password management and

10

https://www.zdnet.com/article/best-password-manager/
https://www.zdnet.com/article/10-passkey-survival-tips-prepare-for-your-passwordless-future-now/
https://www.zdnet.com/article/best-password-manager/
https://www.zdnet.com/article/best-password-manager/

authenticator capabilities (known as "platform
authenticators"). And for those who prefer an
authenticator in the form of dedicated hardware, you have
the option of a roaming authenticator such as one of
Yubico's Yubikeys or Google's Titan.

how passkeys work

Let's start the passkey registration process

Your passkey journey can be a strange and inconsistent ordeal. But it
doesn't have to be this way. Read now

Given the variety of choices for both clients and
authenticators, a standard like CTAP was required to
normalize the integration between them as best as
possible.

11

https://www.zdnet.com/article/best-security-key/

Passkeys are, therefore, both a WebAuthn and CTAP-
compliant passwordless credential, or what the FIDO
Alliance refers to as a FIDO2-compliant credential. As you
can see, the lingo alone can be confusing. A passkey is
sometimes called a FIDO2 credential and vice versa. You
have password managers that are actually credential
managers because not every supported credential type
(e.g., a passkey) involves a password. But at the same
time, they're also referred to as authenticators, and these
authenticators are not necessarily the authenticators
you're used to working with. But for these authenticators,
there are different types -- platform, virtual, and roaming
-- but not all of them are credential managers. Meanwhile,
most credential managers are authenticators too.

Is your head spinning yet? Mastering the vocabulary,
never mind how to work the technology, is intimidating to
say the least.

One of the goals of this six-part ZDNET series on how
passkeys work is to make passkeys less intimidating. I'm
going to cover the four major workflows in detail,
demonstrating what users will typically see as they go
through each workflow while also revealing the complexity
of what's taking place behind the scenes each time the
user clicks or taps on a link or button.

Also: The best security keys: Expert tested

12

https://www.zdnet.com/article/best-security-key/

Sussing out the most
important passkey concepts

While it's impossible to achieve this goal without going
into some of the gory technical details, this series
attempts to strike a balance between a high-level primer
and a low-level discussion of every configuration,
outcome, and parameter that's available to each of the
workflows. As such, I focus on the most important of the
passkey concepts and implementations, the ones that
make a convincing story about the superiority of passkeys
over traditional credentials. In doing so, I will gloss over --
or altogether ignore -- some of the finer points (even
though they're important too) while taking certain liberties
with the vocabulary.

For example, when I say credential manager, I usually
mean the password manager performing in its credential
manager role. But when I say authenticator, I also mean
the password manager, but in its authenticator role. You
heard about the client in this introduction to the series,
but you won't see that term again. Going forward, I'll go
with "browser" to make certain points. Even though the
phrase "relying party" technically refers to the party that's
the operator of the sites, apps, and other services that
support passkeys, it is frequently used interchangeably

13

with words like "site" and "app" to keep the reader
focused on the four major entities involved in most
passkey workflows.

Speaking of apps, this series would have been twice as
long if I had given specific lip service to the mobile
passkey user experiences on iOS and Android. I skipped
them because the basic workflows and concepts are the
same. However, I plan to revisit the mobile use case in
future articles because some mobile app adaptations to
passkeys are better than others.

With apologies to the people who developed the
WebAuthn and CTAP standards, key terminology -- exact
field names and conceptually important words like
"nonce" and "attestation" -- are abstracted or bypassed
altogether so as not to distract readers from the higher-
level concepts being explained.

Finally, for demonstration purposes, I use the same four
technologies across this entire series:

• 	Shopify.com for the relying party

• 	Google Chrome for the browser

• 	Bitwarden's password management extension (for

Chrome) for the authenticator/credential manager

• 	MacOS for the operating system

14

http://shopify.com/

I could have just as easily picked Paypal.com, Firefox,
NordPass, and Windows 11. There would have been
subtle differences in the user experience, but they would
have been mostly immaterial -- one of the reasons why
passkeys are a better credential than anything to come
before them.

Stay ahead of security news with Tech Today, delivered to
your inbox every morning.

In the next installment -- Do your favorite sites even
support passkeys? -- I use Shopify's website as an
example of how to discover if a relying party even
supports passkeys -- many do not.

How passkeys work: Overview | Discovery | Selection |
 Registration | Authentication | Deletion

original article: https://www.zdnet.com/article/how-
passkeys-work-the-complete-guide-to-your-inevitable-
passwordless-future/?
utm_source=iterable&utm_medium=email&utm_campaign
=techtoday&zdee=[Contact.email_zdee]

15

http://paypal.com/
https://www.zdnet.com/newsletters/
https://www.zdnet.com/article/how-passkeys-work-do-your-favorite-sites-even-support-passkeys/
https://www.zdnet.com/article/how-passkeys-work-do-your-favorite-sites-even-support-passkeys/
https://www.zdnet.com/article/how-passkeys-work-do-your-favorite-sites-even-support-passkeys/
https://www.zdnet.com/article/how-passkeys-work-lets-start-the-passkey-registration-process/
https://www.zdnet.com/article/how-passkeys-work-going-passwordless-with-public-key-cryptography/
https://www.zdnet.com/article/how-passkeys-work-what-really-happens-during-a-passwordless-login/
https://www.zdnet.com/article/how-passkeys-work-to-change-or-delete-a-passkey-youre-on-your-own/

